

ALEXANDRA BAC - LIS MARSEILLE

From the geometry of proofs to that of holes

Thomas Ehrhard's 60th Birthday September 29-30th 2022

- Topology and Morse theory
- Computational homology
 - Algebraic approches
 - « Categorical » approach: reductions
 - Combinatorial approach: discrete Morse theory
- Made in Marseille: Homological Discrete Vector Fields

Topology and Morse theory

Topology and algebraic topology

Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences

Homotopy

Fundamental group $(\Omega(X, x_0) / \sim_h, \circ)$

ALEXANDRA BAC

Topology and algebraic topology

Homotopy

Fundamental group $(\Omega(X, x_0) / \sim_h, \circ)$

Computationally (th. Van Kampen)

 \rightarrow Group presentation

Th. Novikov-Boone

Deciding if a group is trivial given its presentation:

non decidable

ALEXANDRA BAC

$\langle \gamma_1, \gamma_2, \gamma_3, \gamma_4 | \gamma_1 \gamma_2 \gamma_1^{-1} \gamma_2^{-1} \gamma_3 \gamma_4 \gamma_3^{-1} \gamma_4^{-1} \rangle$

TOPOLOGY

ALEXANDRA BAC

HOLES OF AN OBJECT

(Simplicial) homology A a coefficient ring

Hole: cycle which is not the boundary of anything

$$C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \cdots C_1 \xrightarrow{\partial_1} C_0$$
 Chain comp

*q*th chain group: free group generated by *q*-cells with coefficients in *A*

(Simplicial) homology

Hole: cycle which is not the boundary of anything

ALEXANDRA BAC

A a coefficient ring

$$C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \cdots C_1 \xrightarrow{\partial_1} C_0$$
 Cha

Boundary morphism

Satisfies: $\partial_q \partial_{q-1} = 0$

(Simplicial) homology

A a coefficient ring

$$C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \cdots C_1 \xrightarrow{\partial_1} C_0$$
 Chain complete C

 $\ker \partial_a$

 $\operatorname{Im} \partial_{q+1} \subseteq \ker \partial_q$

 $\operatorname{Im} \partial_{q+1}$ **Boundaries**:

Hole: cycle which is not the boundary of anything

(Simplicial) homology

A a coefficient ring

$$C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \cdots C_1 \xrightarrow{\partial_1} C_0$$
 Chain com

q-th homology group:

$$H_q(C) = \ker \partial_q / \operatorname{Im} \partial_{q+1}$$

Hole: cycle which is not the boundary of anything

(Simplicial) homology

A a coefficient ring

$$C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} \cdots C_1 \xrightarrow{\partial_1} C_0$$
 Chain complete C

q-th homology group:

$$H_q(C) = \ker \partial_q / \operatorname{Im} \partial_{q+1}$$

$$_{q}(C) \simeq \mathbb{Z}^{\beta_{q}} \times \mathbb{Z}/\lambda_{1} \mathbb{Z} \times \cdots \times \mathbb{Z}/\lambda_{n} \mathbb{Z} \qquad \lambda_{i} | \lambda_{i+1} \mathbb{Z}$$

q-th Betty number: number of holes of dimension *q*

Computational homology

Computational homology

Homology is computable in polynomial time (Munkres, 1984)

COMBINATORIAL APPROACHES

DISCRETE MORSE THEORY

Computation of graph on the complex

> Upper bound on **Betty numbers**

Geometry

« Categorical » approches : reductions and effective homology

Reduction between two chain complexes(C, ∂) and (C', ∂') : $\rho = (h, f, g)$ with h_q : $C_q \rightarrow C_{q+1}, f$: $C \rightarrow C', g$: $C' \rightarrow C$ 1. f, g chain morphisms 2. $fg = \mathrm{Id}_{C'}$ 3. $gf = \mathrm{Id}_C + h\partial + \partial h$ 4. hh = 0, fh = 0, hg = 0

ALEXANDRA BAC

Then:

 $\forall q \quad H_q(C) = H_q(C')$

(Sergeraert, 2002)

Morse theory in 2 slides (and a half) *M* a smooth closed manifold $f: \mathcal{M} \to \mathbb{R}$ a smooth function Ex: f(X) = z height function $f(X) = z_0$

M a smooth closed manifold

$f: \mathcal{M} \to \mathbb{R}$ a smooth function

Ex: f(X) = z height function

M a smooth closed manifold

$f: \mathcal{M} \to \mathbb{R}$ a smooth function

Ex: f(X) = z height function

M a smooth closed manifold

 $f: \mathcal{M} \to \mathbb{R}$ a smooth function

Ex: f(X) = z height function

X critical point if $df_X = 0$

M a smooth closed manifold

 $f: \mathcal{M} \to \mathbb{R}$ a smooth function

Ex: f(X) = z height function

X critical point if $df_X = 0$

X non degenerate critical point if $Hess(f)_X$ non singular

M a smooth closed manifold

 $f: \mathcal{M} \to \mathbb{R}$ a smooth function

Ex: f(X) = z height function

X critical point if $df_X = 0$

X non degenerate critical point if $Hess(f)_X$ non singular

 $f: \mathcal{M} \to \mathbb{R}$ is a Morse function on \mathcal{M} if all critical points are non degenerate

M a smooth closed manifold

 $f: \mathcal{M} \to \mathbb{R}$ a Morse function

Ex: f(X) = z height function

Morse lemma

If X is a (non-degenerate) critical point, there exist a local chart $(x_1, ..., x_n)$ in a neighbourhood U of X s.t:

$$f(x_1, \dots, x_n) = f(X) - \sum_{i=1}^{\lambda} x_i^2 + \sum_{j=\lambda+1}^{n} x_j^2$$

Then λ index of f at X

M a smooth closed manifold

 $f: \mathcal{M} \to \mathbb{R}$ a Morse function

Ex: f(X) = z height function

Morse lemma

If X is a (non-degenerate) critical point, there exist a local chart $(x_1, ..., x_n)$ in a neighborhood U of X s.t:

$$f(x_1, \dots, x_n) = f(X) - \sum_{i=1}^{\lambda} x_i^2 + \sum_{j=\lambda+1}^{n} x_j^2$$

Then λ index of f at X

<u>CW-complex decomposition</u>

ALEXANDRA BAC

Morse theory in 2 slides (and a half)

Surgery / decomposition of the manifold

Single critical value $c \in [c - \epsilon, c + \epsilon]$ of index λ

 $\overset{\text{diffeo}}{M_{c+\epsilon}} \simeq M_{c-\epsilon} \cup_g B^\lambda \times B^{m-\lambda}$

Morse theorem \mathcal{M} closed *m* dimensional manifold

Euler-Poincaré invariant:

$$\chi(\mathscr{M}) = \sum_{q=0}^{m} (-1)^{q} \kappa_{q}$$

Where:
$$\chi(\mathcal{M}) = \sum_{q=0}^{m} (-1)^q \beta_q$$

 $\beta_0 = 1$ $\beta_1 = 2$ $\beta_2 = 1$

κ_q number of critical points of index q

 $\kappa_0 = 1$ $\kappa_1 = 3$ $\kappa_2 = 2$

Weak Morse inequality

$$\forall d \qquad \kappa_d \geqslant \beta_d$$

f is a perfect Morse function if

$$\forall q \quad \kappa_q = \beta_q$$

 $\chi = 1 - 2 + 1 = 0 = 1 - 3 + 2$

Flow of the gradient vector field (Morse-Smale)

 $\gamma_X : \mathbb{R} \to \mathscr{M}$ flow line trough *X*

$$\frac{\mathrm{d}\gamma_X}{\mathrm{d}t} = \nabla_X f$$

and. $\gamma_X(0) = X$

Discrete Morse theory $(\mathbf{R. Foreman}, 1998)$

Define **discrete Morse functions** over a simplicial complex K

- Better defined from their gradient vector field (V)
- By combinatorial properties

V is a discrete gradient vector field (DGVF) if:

- $\rightarrow V$ pairing on H (Hasse diagram of K boundary graph)
- \rightarrow Let G, obtained from H by inverting the edges of V

ALEXANDRA BAC

V matches $\alpha^{(q)} \rightarrow \beta^{(q+1)}$

 $\rightarrow G$ is a Morse graph if all subgraphs $G_{q,q+1} = G|_{\dim q \cup \dim q+1}$ are acyclic (V-paths)

Discrete Morse theory (**R. Foreman, 1998**)

ALEXANDRA BAC

Discrete Morse theory (**R. Foreman, 1998**)

V is **optimal** if κ_d minimal

V is **perfect** if $\kappa_d = \beta_d \quad \forall d$

ALEXANDRA BAC

Discrete Morse lemma

 $\forall d$ $\beta_d \leqslant \kappa_d$

Perfect DGVF

ALEXANDRA BAC

Discrete Morse theory $(\mathbf{R. Foreman}, 1998)$

IS A PERFECT DGVF COMPUTABLE ?

DOES A PERFECT HDVF ALWAYS EXISTS ?

Non perfect DGVF (but no pair can be added)

Discrete Morse theory $(\mathbf{R. Foreman}, 1998)$

- Computing an optimal DGVF is NP-hard in general
- Some simplicial complexes do not admit any perfect DGVF
 - Bing's house (example of contractible but not collapsible complex)

• Dunce hat

ALEXANDRA BAC

Because of acyclicity condition

Made in Marseille: Homological Discrete Vector Fields (HDVF)

Phd Aldo Gonzalez Lorenzo

Homological Discrete Vector Fields (allowing cycles)

K (simplicial) complex

- A **HDVF** is a partition: $K = P \sqcup S \sqcup C$ such that $\partial(S_{q+1})|_{P_a}$ (reduced boundary matrix) is invertible
- A HDVF induces a reduction

O Critical • Primary Secondary

A discrete vector field V can be associated to any HDVF:

- *P* primary cells
- S secondary cells
- C critical cells

Homological Discrete Vector Fields (allowing cycles)

Associated reduction:

$$H = (\partial(S)|_P)^{-1}$$

$$F = -\partial(S)|_C \times (\partial(S)|_P)^{-1}$$

$$G = -(\partial(S)|_P)^{-1} \times \partial(C)|_F$$

$$D = \partial(C)|_C + F \times \partial(C)|_P = \partial(C)|_C + C$$

ALEXANDRA BAC

Reduced complex: critical cells

- $\partial(S)|_C imes G$

EFFECTIVE HOMOLOGY

MORSE THEORY

ALEXANDRA BAC

Homological Discrete Vector Fields (allowing cycles)

Provides an HDVF

SMITH NORMAL FORM PERSISTENT HOMOLOGY

Homological Discrete Vector Fields (allowing cycles)

- Computing an optimal HDVF has cubical complexity
- We **don't know** any simplicial complexe that does not admit a perfect HDVF
 - Bing's house

- Dunce hat
- Provides homology generators ...

Thanks for you attention