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Overview

e Topology and Morse theory
e Computational homology
e Algebraic approches
e « Categorical » approach: reductions
e Combinatorial approach: discrete Morse theory

e Made in Marseille: Homological Discrete Vector Fields




Topology and Morse theory
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Topology and algebraic topology

Topological space

Object Topology
@ 3 holes
== 2 holes
>
1 hole
Algebraic e
object Properties

lllustration: ©@Johan Jarnectad/The Royal Swedish Academy of Sciences
(group)
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Homotopy

Fundamental group (€2(X, xy)/ ~;, , °)
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Topology and algebraic topology

Homotopy

Fundamental group (€2(X, xy)/ ~;, , °)

Computationally (th. Van Kampen) (V1> Y2 V3 Yal 07220 5 ravays v )

— Group presentation

Th. Novikov-Boone

Deciding if a group is trivial given its

presentation:

non decidable
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(Simplicial) homology

HOLES OF AN
TOPOLOGY —

\

Hole: cycle which is not the boundary of anything
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(Simplicial) homology

A a coefficient ring

Hole: cycle which is not the boundary of anything
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(Simplicial) homology

A a coefficient ring

Chain complex

Boundary morphism

Satisfies: 0,0, | =0

05(fa56) = €56 — €46 T €45

61(645) — VS — V4 coe

Hole: cycle which is not the boundary of anything
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(Simplicial) homology

A a coefficient ring

C 5>C,_,— C — C, Chain complex

g-cycles:  kero,
C kero
= q

Boundaries: Imod_,

05(fa56) = €56 — €46 T €45

61(645) — VS — V4 coe

Hole: cycle which is not the boundary of anything
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(Simplicial) homology

A a coefficient ring

C 5>C,_,— C — C, Chain complex

g-th homology group:
H (C) =kero, /Ima,,,

05(fa56) = €56 — €46 T €45

61(645) — VS — V4 coe

Hole: cycle which is not the boundary of anything
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(Simplicial) homology

A a coefficient ring

C 5>C,_,— C — C, Chain complex

g-th homology group:
H (C) =kero, /Ima,,,

05(J456) = €56 — €46 1 €45 H (C) =~ Z@.L ZIMNLX == X ZIA, 2 4| Ay
01(€45) = Vs = Vy ... g-th Betty number: number of holes of dimension ¢

2@ @20 =2




Computational homology
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Computational homology

Homology is computable in polynomial time (Munkres, 1984

ALGEBRAIC APPROACHES CATEGORICAL APPROACHES COMBINATORIAL APPROACHES

DISCRETE MORSE
SMITH NORMAL FORM EFFECTIVE HOMOLOGY THEORY

Computation of graph

Pseudo-diagonalisation Computation of 2 on the complex

of the boundary reduction

R to a smaller complex Upper bound on

Betty numbers
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D « Categorical » approches:
reductions and effective homology

Reduction between two chain complexes(C, d) and (C’, 9'): J . 0,
g+
p=(htg) > Cpn=C, — Cgo1—
withi, : C. > C...f:C—>C.g:C —C L |
q q q+1
1. f, g chain morphisms Jar [Bav Jof |8 Jam1 || 8o
0’ 0’

2. fg=1dc » Cl — C,— C_| —
3. gf=1d,+ ho+ oh
4. hh=0,fh=0hg=0

(Sergeraert, 2002)

Vg H,(C)=H,C)
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Morse theory in 2 slides (and a half)

M a smooth closed manifold f . M4 — R asmooth function

Ex: f(X) =z heightfunction
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Morse theory in 2 slides (and a half)

M a smooth closed manifold f . M4 — R asmooth function

Ex: f(X) =z heightfunction

X critical point if dfy, = 0
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Morse theory in 2 slides (and a half)

M a smooth closed manifold f . M4 — R asmooth function

Ex: f(X) =z heightfunction

X critical point if dfy, = 0

X non degenerate critical point if Hess(f)y non singular
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Morse theory in 2 slides (and a half)

M a smooth closed manifold f . M4 — R asmooth function

Ex: f(X) =z heightfunction

X critical point if dfy, = 0

X non degenerate critical point if Hess(f)y non singular

f . 4 — R isaMorse function on ./ if
all critical points are non degenerate
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Morse theory in 2 slides (and a half)

M a smooth closed manifold f . 4 — R aMorse function

Ex: f(X) =z heightfunction

Morse lemma
If X is a (non-degenerate) critical point, there exist
a local chart (x, ..., x,) in a neighbourhood U of X s.t:

A n
fOxys X)) = fX) = Y x24 Y X
=1

J=A+1
Then A index of fat X
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Morse theory in 2 slides (and a half)

M a smooth closed manifold f . 4 — R aMorse function

Ex: f(X) =z heightfunction

Morse lemma
If X is a (non-degenerate) critical point, there exist
a local chart (x, ..., x,) in a neighborhood U of X s.t:

A n
fOxys X)) = fX) = Y 324 Y X
=1

J=A+1

Then A index of fat X
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Morse theory in 2 slides
(and a half)

Surgery / decomposition of the manifold

Single critical valuec € [c — €, ¢ + €]

of index A

M., ~M._.u,B"xB""
c+e — c—e g
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Morse theory in 2 slides (and a half)

K, number of critical points of index ¢

Morse theorem
M closed m dimensional manifold

Weak Morse inequality

Ky 2 Py

Euler-Poincaré invariant:

2l = ) (= 1Yk,

fis a perfect Morse function if

qg=0
Vg k,=p,
m ,B() — Ko =
Where: y(M) = Z (-1)78, B, = K =3
q=0 pr=1 9 —

y=1-2+1=0=1-3+2
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D Morse theory in 2 slides (and a half)

R TN

Flow of the gradient vector field (Morse-Smale)

vy : R = M flow line trough X

Vf
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Discrete Morse theory
(R. Foreman, 1998)

Define discrete Morse functions over a simplicial complex K

e Better defined from their gradient vector field (V)
V matches

e By combinatorial properties a® = pa+D

V is a discrete gradient vector field (DGVF) if:

— V pairing on H (Hasse diagram of K - boundary graph)
— Let G, obtained from H by inverting the edges of V

— G is a Morse graph if all subgraphs G, . are acyclic (V-paths)

=G |diqudimq+1
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Discrete Morse theory
(R. Foreman, 1998)




Discrete Morse theory
(R. Foreman, 1998)

Vis optimal if k; minimal

Vis perfectifx, =, Vd

O\ Discrete Morse lemma
/ \ \ v ,Bd < K,

-6. ’ o
DGVF 4 Critical cells
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Discrete Morse theory
(R. Foreman, 1998)

€ g g
% Y, N 2 IS A PERFECT
/ / /// { DGVF COMPUTABLE ?
// / '@’ S /1

DOES A PERFECT
Perfect DGVF HDVF ALWAYS EXISTS ? Non perfect DGVF

(but no paircan be added)
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Discrete Morse theory
(R. Foreman, 1998)

e Computing an optimal DGVF is NP-hard in general

e Some simplicial complexes do not admit any perfect DGVF

* Bing's house (example of contractible but not collapsible complex)

Because of
acyclicity condition
e Dunce hat




Made in Marseille:
Homological Discrete Vector Fields (HDVF)

Phd Aldo Gonzalez Lorenzo
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Homological Discrete Vector Fields
(allowing cycles)

K (simplicial) complex

e A HDVF is a partition:

K=PusSucC
such that o(S, ) |, (reduced boundary matrix) is invertible

* AHDVF induces a reduction A discrete vector field V can
be associated to any HDVF:

e P primary cells

O Critical — (3

® o L o o

o X O Primary L 5 e §secondary cells
O 7 O Secondary S l e (critical cells

V- QEESIC C T
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Homological Discrete Vector Fields
(allowing cycles)

Associated reduction:

P S C C
Pl 0[0]O0 P S C P10
h= S|H|0|0| f= C[F|lo|I| g= S|G| o= c[D K=Fusuc
C10]0]0 C |1
H=(9(5)p)"
F=-90(9)|c x (8(S)|p) ! Reduced complex: critical cells

C)lp =09(C)lc +9(S)lc x G
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Homological Discrete Vector Flelds
(allowing cycles) «

Provides|an HDVF

PERSISTENT
MORSE THEORY
HOMOLOGY
EFFECTIVE SMITH
HOMOLOGY NORMAL FORM
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Homological Discrete Vector Fields
(allowing cycles)

e Computing an optimal HDVF has cubical complexity

e We don’t know any simplicial complexe that does not admit a perfect HDVF

* Bing's house

e Dunce hat

* Provides homology generators ...




Thanks for you attention




