
Strong and extensional stability

through the prism of dialogue games

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Cité & INRIA

Journées en l’honneur de Thomas Ehrhard
Conservatoire des Arts et Métiers – 29 & 30 Septembre 2022

First encounter: a life-changing talk in Amsterdam (1991)

The first time I heard Thomas talk about his work with Antonio at LICS
was a powerful experience that left a lasting impression.

The paper is sharp as a knive, an elegant and creative mathematical work,
and a source of inspiration to further explore the structures of sequentiality.

Hypercoherence spaces (1993)

Thomas then discovers how to « linearize » the strongly stable model
by refining coherence spaces into hypercoherence spaces!

The golden age of linearization

Quite extraordinarily, the main qualitative (= finitary) models of

PCF = simply-typed λ-calculus + arithmetics + fixpoint operator

are refined into models of linear logic:

stability
(Berry 1978)

coherence spaces
(Girard 1987)

strong stability
(Bucciarelli-Ehrhard, 1991)

hypercoherence spaces
(Ehrhard 1993)

sequential algorithms
(Berry-Curien 1982)

sequential data structures
(Lamarche, Curien 1993)

extensional stability
(Berry 1979)

bistructures
(Curien-Plotkin-Winskel, 2000)

Extensional collapse of sequential algorithms (1996)

A few years later, Thomas establishes that the strongly stable model
is the « extensional collapse » of the sequential algorithm model.

A trail of audacious and inspirational works

B serial and parallel hypercoherence spaces with Pierre Boudes

B indexed linear logic and intersection types with Antonio Bucciarelli

B differential lambda-calculus with Laurent Regnier

B probabilistic coherence spaces with Vincent Danos

B encoding the π-calculus in differential nets with Olivier Laurent

B probabilistic PCF with Michele Pagani and Christine Tasson

B the free exponential modality of probabilistic coherence spaces
B with Raphaëlle Crubillé, Michele Pagani and Christine Tasson

B linear logic with fixpoints with Farzad Jafar-Rahmani

B more recently: coherent differentiation

Game semantics and relational semantics

One important open question was to understand the connection between

B dynamic semantics: sequential algorithms, game semantics, etc.

B static semantics: relational semantics, coherence spaces, etc.

Patrick Baillot, Vincent Danos, Thomas Ehrhard, Laurent Regnier
Timeless Games.

Proceedings of Computer Science Logic (CSL) 1997

Martin Hyland and Andrea Schalk
Abstract Games for Linear Logic.

Electronic Notes in Theoretical Computer Science, 1999.

Thomas Ehrhard Pierre Boudes
Parallel and serial hypercoherences. Projecting Games on Hypercoherences.
Theoretical Computer Science 2000 Proceedings of ICALP 2004

An insight coming from Huet and Lévy

In rewriting theory, it is important to consider rewriting paths modulo redex
permutations of the form

M

(λy.M)N

(λy.M)Q(λx.(λy.x))MQ

(λx.(λy.x))MN

c

b

vu

a

Hypercoherence spaces
as the starting point of an exciting journey

In order to connect sequential games and hypercoherence spaces,
it appears necessary to play on directed acyclic graphs instead of trees.

Excerpt from PAM, Sequential algorithms and strongly stable functions, TCS 2005.

Tensorial logic

A logic of linear continuations

Starting point

We explain in what sense

game semantics is a syntax of continuations

and exploit this idea to interpret

dialogue games 7→ hypercoherence spaces

innocent strategies 7→ cliques

Continuations

Captures the difference between addition as a function

nat × nat ⇒ nat

and addition as a sequential algorithm

(nat⇒ ⊥)⇒ ⊥ × (nat⇒ ⊥)⇒ ⊥ × (nat⇒ ⊥) ⇒ ⊥

This enables one to distinguish the left-to-right implementation

lradd = λϕ. λψ. λk. ϕ (λx. ψ (λy. k (x + y)))

from the right-to-left implementation

rladd = λϕ. λψ. λk. ψ (λy. ϕ (λx. k (x + y)))

The left-to-right addition

¬¬ nat × ¬¬ nat ⇒ ¬¬ nat

question

question

12
question

5
17

lradd = λϕ. λψ. λk. ϕ (λx. ψ (λy. k (x + y)))

The right-to-left addition

¬¬ nat × ¬¬ nat ⇒ ¬¬ nat

question

question

5
question

12
17

rladd = λϕ. λψ. λk. ψ (λy. ϕ (λx. k (x + y)))

Tensorial logic

tensorial logic = a logic of tensor, sum and negation

= linear logic without A � ¬¬A

= the syntax of linear continuations

= the syntax of dialogue games

= another way to speak about « ludics »

Tensorial logic

B Formulas

A,B ::= 0 | 1 | A ⊕ B | A ⊗ B | ¬A

B Sequents

A1 , . . . , Ak ` B

−→ where each hypothesis Ai is a formula

−→ where the conclusion B is either a formula or the constant ⊥.

Tensorial logic

Axiom A ` A
Γ ` A A , ∆ ` B

Γ , ∆ ` B
Cut

Left ¬ Γ ` A
Γ , ¬A ` ⊥

Γ , A ` ⊥
Γ ` ¬A

Right ¬

Exchange A1 , . . . , Ak ` B
Aσ(1) , . . . , Aσ(k) ` B

for any permutation σ

Tensorial logic

Left ⊗ Γ , A , B ` C
Γ , A ⊗ B ` C

Γ ` A ∆ ` B
Γ,∆ ` A ⊗ B

Right ⊗

Left 1 Γ ` A
Γ, 1 ` A ` 1 Right 1

Tensorial logic

Left ⊕ Γ , A ` C Γ , B ` C
Γ , A ⊕ B ` C

Left 0 Γ , 0 ` A

Γ ` A
Γ ` A ⊕ B

Right ⊕L

Γ ` B
Γ ` A ⊕ B

Right ⊕R

no introduction rule Right 0

Left-to-right implementation

A ` A B ` B Right ⊗A , B ` A ⊗ B
Left ¬B , ¬ (A ⊗ B) , A ` Right ¬

¬ (A ⊗ B) , A ` ¬ B
Left ¬A , ¬¬ B , ¬ (A ⊗ B) ` Right ¬

¬¬ B , ¬ (A ⊗ B) ` ¬ A
Left ¬

¬ (A ⊗ B) , ¬¬ A , ¬¬ B ` Right ¬
¬¬ A , ¬¬ B ` ¬¬ (A ⊗ B)

Left ⊗
¬¬ A ⊗ ¬¬ B ` ¬¬ (A ⊗ B)

lrsched = λϕ. λψ. λk. ϕ (λx. ψ (λy. k (x, y)))

Right-to-left implementation

A ` A B ` B Right ⊗A , B ` A ⊗ B
Left ¬A , B , ¬ (A ⊗ B) ` Right ¬B , ¬ (A ⊗ B) ` ¬ A

Left ¬B , ¬ (A ⊗ B) , ¬¬ A ` Right ¬
¬ (A ⊗ B) , ¬¬ A ` ¬ B

Left ¬
¬ (A ⊗ B) , ¬¬ A , ¬¬ B ` Right ¬
¬¬ A , ¬¬ B ` ¬¬ (A ⊗ B)

Left ⊗
¬¬ A ⊗ ¬¬ B ` ¬¬ (A ⊗ B)

rlsched = λϕ. λψ. λk. ψ (λy. ϕ (λx. k (x, y)))

Dialogue categories

The categorical counterpart of game semantics

Dialogue categories

Definition.

A dialogue category D is a symmetric monoidal category with

B an object ⊥

B a functor

A 7→ ¬A : D op
−→ D

B a family of bijections

ϕA,B : D (A ⊗ B , ⊥) −→ D (A , ¬B)

. natural in A and B.

Dialogue categories

Definition. A dialogue category D has finite sums when

B the underlying category D has finite sums

B the finite sums distribute over the tensor product.

This means that the canonical morphisms

(A ⊗ B) ⊕ (A ⊗ C) −→ A ⊗ (B ⊕ C) 0 −→ A ⊗ 0

are isomorphisms.

The free dialogue category F with sums

BB The objects of F are the formulas of tensorial logic

A,B ::= 0 | 1 | A ⊕ B | A ⊗ B | ¬A

. modulo a series of equations:

. B associativity of ⊕ and ⊗

. B the unit laws of ⊕ and ⊗

. B distributivity of ⊕ over ⊗.

BB The morphisms of F are the derivation trees of tensorial logic
. modulo a series of equations.

The free dialogue category F with sums

Fact. Every dialogue category with sums D induces a functor

[−] : F D

which preserves the logical structure:

B negation

B finite sums ⊕ and the unit 0

B tensor products ⊗ and the unit 1

Here, we follow the philosophy of Jim Lambek

Dialogue games

A symmetrized notion of concrete data structure

The free dialogue category F with sums

Key theorem.

BB The objects of F are the dialogue games generated by

A,B ::= 0 | 1 | A ⊕ B | A ⊗ B | ¬A

BB The morphisms of F are total and innocent strategies.

Innocent strategies are the « proof-nets » of game semantics

The correspondence

Fact. Every formula of tensorial logic

A,B ::= 0 | 1 | A ⊕ B | A ⊗ B | ¬A

modulo the equations:

. B associativity of ⊕ and ⊗

. B the unit laws of ⊕ and ⊗

. B distributivity of ⊕ over ⊗

is uniquely determined by a normal form

A =
⊕

i∈I
⊗

j∈Ji
¬ A i j

The correspondence

This canonical decomposition should be interpreted as follows:

conflict

parallelism

 change
of player

The correspondence

conflict

parallelism

 change
of player

*

true falsetrue false

q q
memory site

 change
of player

 change
of player

Dialogue games

Definition. A rooted dialogue game is a bipartite tree

(C,V,B)

with nodes separated into a set C of cells and a set V of values.
By bipartite, one means that

B ⊆ C × V + V × C.

This tree is moreover equipped with a polarity function

λ : C + V −→ {+1,−1}

such that for every cell α ∈ C and every value v ∈ V one has:

α B v ⇒ λ(α) = λ(v)
v B α ⇒ λ(α) = −λ(v).

Finally, one requires that the root ∗ of the tree is a value of polarity +1.

Dialogue games

conflict

parallelism
 change
of player

*

true falsetrue false

q q

memory site

 change
of player

 change
of player

Dialogue games

conflict

parallelism

 change
of player

*

true falsetrue false

q q
memory site

 change
of player

 change
of player

Positions of a dialogue game

The positional nature of logical proofs

Positions of a dialogue game

Pos (0) = ∅

Pos (1) = { ∗ }

Pos (A ⊕ B) = Pos (A) + Pos (B)

Pos (A ⊗ B) = Pos (A) × Pos (B)

Pos (¬A) = Pos (A) + { ∗ }

Positions of a dialogue game

*

true false

q

true false

positions

Positions of a dialogue game

*

positions

Positions of a dialogue game

*

q

positions

Positions of a dialogue game

*

true

q

true

positions

Positions of a dialogue game

*

false

q

false

positions

Positions of a dialogue game

truefalse

false

falsefalse true true

false true

true

true

true false

true false

false

*

true falsetrue false

q q

positions

Positions of a dialogue game

true

true false

true false

false

positions

*

falsetrue

q q

Positions of a dialogue game

positions

*

Positions of a dialogue game

positions

*

q

Positions of a dialogue game

true

positions

*

true

q

Positions of a dialogue game

true

true

positions

*

true

q q

Positions of a dialogue game

true

true false

true

positions

*

falsetrue

q q

Positions of a dialogue game

true true true

true true
false false true

true false

true true true

false true

true truetrue

false true
false false

false
true

false
true

false truefalse

true false true

true falsetrue false

q q

false

*

q

true falsefalse

true

true

true false

false

false

false

false

positions

B ⊗ B (B

Positions of a dialogue game

true false true

falsetrue

q q

false

*

q

true
true

true

true false

false

false

positions

The left-to-right strategy

¬¬ bool × ¬¬ bool ⇒ ¬¬ bool

question

question

true

question

false

true

Positions of a dialogue game

*

positions

Positions of a dialogue game

*

q

positions

Positions of a dialogue game

q

*

q

positions

Positions of a dialogue game

true

q

*

q

true

positions

Positions of a dialogue game

true

q q

*

q

true

true

positions

Positions of a dialogue game

falsetrue

q q

false

*

q

true

true

true false

positions

Positions of a dialogue game

true false true

falsetrue

q q

false

*

q

true
true

true

true false

positions

The right-to-left strategy

¬¬ bool × ¬¬ bool ⇒ ¬¬ bool

question

question

false

question

true

true

Positions of a dialogue game

*

positions

Positions of a dialogue game

*

q

positions

Positions of a dialogue game

q

*

q

positions

Positions of a dialogue game

false

q

false

*

q

false

positions

Positions of a dialogue game

false

q q

false

*

q

false

false

positions

Positions of a dialogue game

falsetrue

q q

false

*

q

true false

false

false

positions

Positions of a dialogue game

true false true

falsetrue

q q

false

*

q

true

true false

false

false

positions

How to turn (functorially) a dialogue game

into a hypercoherence space

Putting the free dialogue category at work !

Positions of a dialogue game

Pos (0) = ∅

Pos (1) = { ∗ }

Pos (A ⊕ B) = Pos (A) + Pos (B)

Pos (A ⊗ B) = Pos (A) × Pos (B)

Pos (¬A) = Pos (A) + { ∗ }

Suspension modality

Definition. A suspension modality

� : C −→ C

on a symmetric monoidal category C is defined as a

symmetric monoidal comonad

that is, a functor equipped with maps

εA : �A −→ A counit
δA : �A −→ ��A comultiplication

mA,B : �A ⊗ �B −→ � (A ⊗ B) lax monoidal
m1 : 1 −→ � 1 lax monoidal

satisfying a series of coherence properties.

A Gödel translation L⊗ LL + �

Fact. Every suspension modality � induces an adjunction

D ⊥ C

Forget

Co f ree

between the category C and its category D of �-coalgebras.

Key observation.

When C is ∗-autonomous, D is a dialogue category with negation

¬ A = Co f ree ((Forget A) ∗)

A Gödel translation L⊗ LL + �

Corollary.

Every ∗-autonomous category C equipped with a suspension modality �

induces a functor

F D C
[−] Forget

which satisfies the equations

[0] = 0
[1] = 1

[A ⊕ B] = [A] ⊕ [B]
[A ⊗ B] = [A] ⊗ [B]
[¬A] = � ([A] ∗)

Four functorial interpretations

F −→ Rel sets and relations

F −→ Coh coherence spaces and cliques

F −→ HCoh hypercoherence spaces and cliques

F −→ BiStr bistructures and configurations

Corollary.

The set Pos (A) of positions of a dialogue game defines:

B a coherence space,

B a hypercoherence space,

B a bistructure.

The Gustave formula in tensorial logic

The Gustave formula is defined as

G = B ⊗ B ⊗ B

where the boolean formula is defined using a double negation:

B = ¬¬ (1 ⊕ 1)

We are interested in the three positions in the dialogue game:

The Gustave formula in dialogue games

The Gustave formula in sequential data structures

The Gustave formula in hypercoherence spaces

What hypercoherence says about the dialogue game

Here, the two positions are pairwise coherent

Here, the two positions are pairwise incoherent

Gustave: the three positions are pairwise incoherent...

Gustave: the three positions are pairwise incoherent...

Gustave: the three positions are pairwise incoherent...

Gustave: the three positions are « threewise » coherent

Hypercoherence spaces and dialogue games
The beautiful idea by Ehrhard that strong stability has to do with

« higher-dimensional » forms of coherence

can be analysed in the framework of dialogue games.

Every finite set of positions v defines a cone of sequential plays

cone(v) = { s ∈ seqplayA | ∀x ∈ v, s ≤A x }

Then, it appears that in the intuitionistic fragment of linear logic, one has
that every non-empty finite set of maximal positions is

B coherent precisely when Opponent can always play in the cone

B incoherent precisely when Player can always play in the cone

This basic observation leads (after some work) to another proof of Ehrhard’s
extensional collapse theorem. More details about the proof in Sequential
algorithms and strongly stable functions, TCS 2005.

What about extensional stability ?

Illustration

L L

R

R

true false

R

true false

*

true false

q

semantics

≤R adds Opponent information

≤L removes Player information

Left-to-right strategy

true false true

true falsetrue false

q q

false

*

q

true falsefalse
true

true

true false

false

false

positions

Extensionality in bistructures

true false true

R

false true

L

σ σ

A form of retrospective game :

Every time Opponent removes some information from a halting position,
Player can get back into the strategy by removing his own information.

In a nutshell

Strong stability provides an elegant and concise description
of the forward and sequential dynamics of proofs.

Extensional stability provides an elegant and interactive description
of the backward and retrospective dynamics of proofs.

Thomas Ehrhard Pierre Boudes
Parallel and serial hypercoherences. Projecting Games on Hypercoherences.
Theoretical Computer Science 2000 Proceedings of ICALP 2004

A nice and flourishing field today

Layered object-based semantics for low level code
Arthur Oliveira Vale, PAM, Zhong Shao, Jérémie Koenig, Léo Stefanesco.

Layered and object-based game semantics.
Proceedings of POPL 2022

Concurrent separation logic
PAM and Léo Stefanesco.

Concurrent Separation Logic Meets Template Games.
Proceedings of LICS 2020

Homotopy models of differential linear logic
PAM, Template games and differential linear logic.

Proceedings of LICS 2019

Pierre Clairambault and Simon Forest
The cartesian closed bicategory of thin spans

Talk at LHC in two weeks, 2022.

Thank you Thomas

for your inspiring work and guidance!

