To finiteness spaces and beyond!

Michele Pagani, Christine Tasson & Lionel Vaux Auclair (not necessarily in that order)

Workshop in Honour of Thomas Ehrhard's 60th Birthday, 29–30 September 2022, Paris

$$|A\otimes B|=|A|\times |B| \quad |A^{\perp}|=|A| \quad |!A|=\mathfrak{M}_f(|A|) \qquad [\![\pi:\Gamma]\!]\subseteq |\Gamma|$$

$$(a', a) \in \left[\!\!\left[\overline{A^{\perp}, A}^{(ax)}\right]\!\!\right] \text{iff } a' = a$$
$$(\gamma, (a, b), \delta) \in \left[\!\!\left[\frac{\pi : \Gamma, A - \rho : B, \Delta}{\Gamma, A \otimes B, \Delta}\right] (\otimes)\right]\!\!\right] \text{iff } (\gamma, a) \in \left[\!\!\left[\pi\right]\!\!\right] \text{ and } (b, \delta) \in \left[\!\!\left[\rho\right]\!\!\right]$$

. . .

$$(\gamma, \delta) \in \left[\!\!\left[\frac{\pi: \Gamma, A \quad \rho: A^{\perp}, \Delta}{\Gamma, \Delta} \right] (cut) \right]\!\! \text{ iff } \exists a \in |A|, \ (\gamma, a) \in \left[\!\!\left[\pi\right]\!\!\right] \text{ and } (a, \delta) \in \left[\!\!\left[\rho\right]\!\!\right]$$

"The" quantitative relational model of linear logic

$$|A \otimes B| = |A| \times |B| \quad |A^{\perp}| = |A| \quad |!A| = \mathfrak{M}_f(|A|) \qquad \llbracket \pi : \Gamma \rrbracket \in \mathbf{S}^{|\Gamma|}$$

$$\begin{bmatrix} \overline{A^{\perp}, A} & (ax) \end{bmatrix}_{a', a} = \delta_{a', a}$$
$$\begin{bmatrix} \pi : \Gamma, A & \rho : B, \Delta \\ \overline{\Gamma, A \otimes B, \Delta} & (\otimes) \end{bmatrix}_{\gamma, (a, b), \delta} = \llbracket \pi \rrbracket_{\gamma, a} \times \llbracket \rho \rrbracket_{b, \delta}$$

$$\left[\!\!\left[\frac{\pi:\Gamma,A\quad\rho:A^{\bot},\Delta}{\Gamma,\Delta}\ (cut)\right]\!\!\right]_{\gamma,\delta} = \sum_{a\in |A|} [\![\pi]\!]_{\gamma,a} \times [\![\rho]\!]_{a,\delta}$$

. . .

To finiteness spaces...

Pagani&Tasson&Vaux

$$\mathcal{F} \subseteq \mathfrak{P}(A) \quad \rightsquigarrow \quad \mathcal{F}^{\perp} \coloneqq \{a' \subseteq A; \, \forall a \in \mathcal{F}, \, a \perp a'\}$$
$$a \perp a' \qquad \text{iff} \qquad a \cap a' \text{ is finite}$$

• A finiteness space is $A = (|A|, \mathcal{F}A)$ with $\mathcal{F}A = (\mathcal{F}A)^{\perp \perp} \subseteq \mathfrak{P}(|A|)$

► The associated vector space: $\mathbf{S}\langle A \rangle \coloneqq \{x \in \mathbf{S}^{|A|}; \operatorname{supp}(x) \in \mathcal{F}A\}$

$$\langle x \mid y \rangle \coloneqq \sum_{a \in |A|} x_a y_a$$
 when $x \in \mathbf{S} \langle A \rangle$ and $y \in \mathbf{S} \langle A^\perp \rangle$

$$\mathcal{F}(A^{\perp}) \coloneqq (\mathcal{F}A)^{\perp}$$
$$\mathcal{F}(A \otimes B) \coloneqq \{x \times y; x \in \mathcal{F}A, y \in \mathcal{F}B\}^{\perp \perp}$$
$$\mathcal{F}(!A) \coloneqq \{\mathfrak{M}_f(x); x \in \mathcal{F}A\}^{\perp \perp}$$

Theorem (EHRHARD, 2005)

 $\llbracket \pi : \Gamma \rrbracket^{Rel} \in \mathcal{F}\llbracket \Gamma \rrbracket$

In particular $\llbracket \pi: \Gamma, A \rrbracket_{\gamma, -}^{QRel} \in \mathbf{S}\langle \llbracket A \rrbracket \rangle$ and $\llbracket \rho: A^{\perp}, \Delta \rrbracket_{-, \delta}^{QRel} \in \mathbf{S}\langle \llbracket A \rrbracket^{\perp} \rangle$

$$\mathcal{F}(A^{\perp}) \coloneqq (\mathcal{F}A)^{\perp}$$
$$\mathcal{F}(A \otimes B) \coloneqq \{x \times y; x \in \mathcal{F}A, y \in \mathcal{F}B\}^{\perp \perp}$$
$$\mathcal{F}(!A) \coloneqq \{\mathfrak{M}_f(x); x \in \mathcal{F}A\}^{\perp \perp}$$

Theorem (EHRHARD, 2005)

$$\llbracket \pi : \Gamma \rrbracket^{Rel} \in \mathcal{F}\llbracket \Gamma \rrbracket$$

In particular $\llbracket \pi : \Gamma, A \rrbracket_{\gamma, -}^{QRel} \in \mathbf{S} \langle \llbracket A \rrbracket \rangle$ and $\llbracket \rho : A^{\perp}, \Delta \rrbracket_{-, \delta}^{QRel} \in \mathbf{S} \langle \llbracket A \rrbracket^{\perp} \rangle$

A semantics of *finite* interaction, e.g.:

- ► YES: system T;
- ▶ NO: letrec, fixpoint operators.

Lemma (EHRHARD, 2005)

$$\mathcal{F}(A \otimes B) = \{ z \in |A \otimes B|; \ z_A \in \mathcal{F}A, \ z_B \in \mathcal{F}B \}$$
$$\mathcal{F}(!A) = \{ \bar{x} \in |!A|; \ \mathsf{supp}(\bar{x}) \in \mathcal{F}A \}$$

Lemma (Transport [T.-V., 2018])

If A is a set and B is a finite space, and $f \subset A \times |B|$ is such that $f \cdot a \in \mathcal{F}B$ for each $a \in A$, then $(A, \{x \subset A; f \cdot x \in \mathcal{F}B\})$ is a finiteness space.

Taylor expansion

A long story short:

- \blacktriangleright finiteness spaces: maps in the coKleisly = power series
- differential λ -calculus (and DiLL)
- Taylor expansion of λ -terms (and of MELL proof nets)

$$\mathcal{T}(-):\Lambda\to\mathbf{S}^{\Delta}$$

$$\mathcal{T}(MN) \coloneqq \sum_{n \ge 0} \frac{1}{n!} \mathcal{T}(M) \mathcal{T}(N)^n$$
$$(\lambda x.s)[t_1, \dots, t_n] \to \sum_{f \in \mathfrak{S}_n} s[t_1/x_1, \dots, t_n/x_n]$$

Theorem (EHRHARD-REGNIER, 2008)

$$\mathsf{NF}(\mathcal{T}(M)) = \mathcal{T}(\mathcal{B}(M))$$

Pagani&Tasson&Vaux

Taylor expansion in a non uniform setting

$$\mathcal{T}(-): \Lambda_+ \to \mathbf{S}^{\Delta}$$
$$\mathcal{T}(M+N) \coloneqq \mathcal{T}(M) + \mathcal{T}(N)$$

What about:

$$\mathsf{NF}(\mathcal{T}(Y(\lambda x.a+x))) = a + a + a + \dots?$$

Taylor expansion in a non uniform setting

$$\mathcal{T}(-): \Lambda_+ \to \mathbf{S}^{\Delta}$$

 $\mathcal{T}(M+N) \coloneqq \mathcal{T}(M) + \mathcal{T}(N)$

What about:

$$\mathsf{NF}(\mathcal{T}(Y(\lambda x.a + x))) = a + a + a + \dots?$$

$$\mathsf{NF}(\mathcal{T}(Y(\lambda x.a - x))) = a - a + a - \dots?$$

Taylor expansion in a non uniform setting

$$\mathcal{T}(-): \Lambda_+ \to \mathbf{S}^{\Delta}$$

 $\mathcal{T}(M+N) \coloneqq \mathcal{T}(M) + \mathcal{T}(N)$

What about:

$$\mathsf{NF}(\mathcal{T}(Y(\lambda x.a + x))) = a + a + a + \dots?$$

$$\mathsf{NF}(\mathcal{T}(Y(\lambda x.a - x))) = a - a + a - \dots?$$

This never happens for typed terms. Why?

To finiteness spaces and beyond!

Pagani&Tasson&Vaux

To finiteness spaces and beyond!

TE60 10/22

Finiteness and Taylor expansion

Let $\mathcal{F}_0 := \{\uparrow s_0; s_0 \in \Delta_0\}^{\perp}$ with $s \in \uparrow s_0$ iff $s_0 \in \mathsf{supp}(\mathsf{NF}(s))$. Define $\llbracket A \rrbracket \subseteq \mathcal{F}_0 \subseteq \mathfrak{P}(\Delta)$ by reducibility.

Theorem (EHRHARD, 2010)

If $\vdash M : A$ then $\mathcal{T}(M) \in \mathbf{S}\langle \llbracket A \rrbracket \rangle$.

Finiteness and Taylor expansion

Let $\mathcal{F}_0 := \{\uparrow s_0; s_0 \in \Delta_0\}^{\perp}$ with $s \in \uparrow s_0$ iff $s_0 \in \mathsf{supp}(\mathsf{NF}(s))$. Define $\llbracket A \rrbracket \subseteq \mathcal{F}_0 \subseteq \mathfrak{P}(\Delta)$ by reducibility.

Theorem (Ehrhard, 2010)

 $If \vdash M : A \ then \ \mathcal{T}(M) \in \mathbf{S}\langle \llbracket A \rrbracket \rangle.$

Refine: $\mathcal{F} \coloneqq \{\uparrow B; B \in \mathcal{B}\}^{\perp}$ with $B \in \mathcal{B}$ if the size of bags in terms of B is bounded.

Theorem (P.T.V., 2016)

M is SN iff $\mathcal{T}(M) \in \mathbf{S}\langle \mathcal{F} \rangle$.

Finiteness and Taylor expansion

Let $\mathcal{F}_0 := \{\uparrow s_0; s_0 \in \Delta_0\}^{\perp}$ with $s \in \uparrow s_0$ iff $s_0 \in \mathsf{supp}(\mathsf{NF}(s))$. Define $\llbracket A \rrbracket \subseteq \mathcal{F}_0 \subseteq \mathfrak{P}(\Delta)$ by reducibility.

Theorem (EHRHARD, 2010)

 $If \vdash M : A \ then \ \mathcal{T}(M) \in \mathbf{S}\langle \llbracket A \rrbracket \rangle.$

Refine: $\mathcal{F} \coloneqq \{\uparrow B; B \in \mathcal{B}\}^{\perp}$ with $B \in \mathcal{B}$ if the size of bags in terms of B is bounded.

Theorem (P.T.V., 2016)

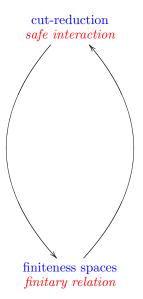
M is SN iff $\mathcal{T}(M) \in \mathbf{S}\langle \mathcal{F} \rangle$.

And then $NF(\mathcal{T}(M)) = \mathcal{T}(NF(M))$?

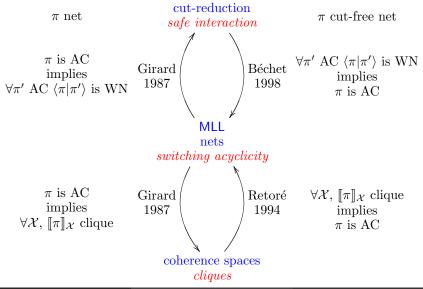
▶ If $M \to_{\beta} N$ and $\mathcal{T}(M) \in \mathbf{S}\langle \mathcal{F}_0 \rangle$ then $\mathsf{NF}(\mathcal{T}(M)) = \mathsf{NF}(\mathcal{T}(N))$ [V., 2017]

▶ This can be adapted to MELL proof nets [CHOUQUET-V., 2018]

Finiteness and Cut-reduction

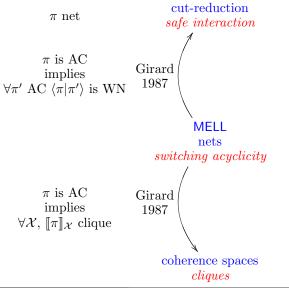


Once upon a time there was... MLL



Pagani&Tasson&Vaux

and what about exponentials, i.e. MELL?



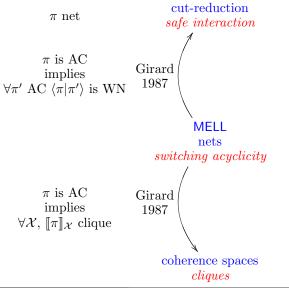
Pagani&Tasson&Vaux

 π cut-free net

Il faut laisser parler les modèles !

Pagani&Tasson&Vaux

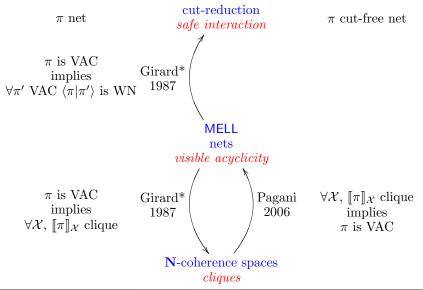
and what about exponentials, i.e. MELL?



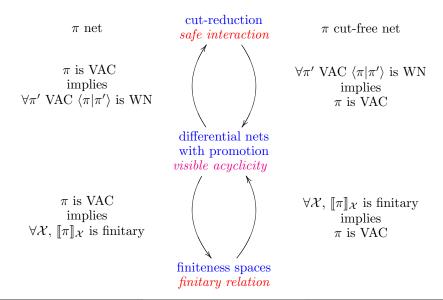
Pagani&Tasson&Vaux

 π cut-free net

and what about exponentials, i.e. MELL? VAC



... what happens in differential LL?



The Topological Space Ranger

Pagani&Tasson&Vaux

Behind the scenes

Linear Logic Cut Rule is given by Linear Algebra composition of Matrices

$$\left[\!\!\left[\frac{\pi:\Gamma,A\quad\rho:A^{\bot},\Delta}{\Gamma,\Delta}\ (cut)\right]\!\!\right]_{\gamma,\delta} = \sum_{a\in |A|} [\![\pi]\!]_{\gamma,a} \times [\![\rho]\!]_{a,\delta}$$

LL Exponentials induce Topological Vector Spaces and Taylor Expansion A proof of $\mathbf{E} \Rightarrow \mathbf{F} \coloneqq !E \multimap F$ is given by $Q \in (\mathbf{K})^{\mathfrak{M}_f(|X|) \times |Y|}$ s.t.

$$\forall x \in \mathbf{S}\langle X \rangle, \ Q(x) = \left(\sum_{m \in \mathfrak{M}_f(|X|)} Q_{m,b} \prod_{a \in m} x_a^{m(a)}\right)_b \in \mathbf{S}\langle Y \rangle$$

Behind the scenes

Linear Logic Cut Rule is given by Linear Algebra composition of Matrices

$$\left[\!\!\left[\frac{\pi:\Gamma,A\quad\rho:A^{\perp},\Delta}{\Gamma,\Delta} \left(cut \right)\!\right]\!\!\right]_{\gamma,\delta} = \sum_{a\in |A|} [\![\pi]\!]_{\gamma,a} \times [\![\rho]\!]_{a,\delta}$$

LL Exponentials induce Topological Vector Spaces and Taylor Expansion A proof of $\mathbf{E} \Rightarrow \mathbf{F} \coloneqq !E \multimap F$ is given by $Q \in (\mathbf{K})^{\mathfrak{M}_f(|X|) \times |Y|}$ s.t.

$$\forall x \in \mathbf{S}\langle X \rangle, \ Q(x) = \left(\sum_{m \in \mathfrak{M}_f(|X|)} Q_{m,b} \prod_{a \in m} x_a^{m(a)}\right)_b \in \mathbf{S}\langle Y \rangle$$

Topology gives a meaning to converging sums.

Topological Vector Spaces based on **Sequences**

Köthe Spaces [Ehrhard 2003]

- A set |A| induces a real or complex vector space $\mathbf{K}^{|A|}$
- ► An orthogonality between vectors

 $x \perp x'$ iff $\sum_{a \in |A|} |x_a x_{a'}|$ is absolutely converging

▶ If $E \subset \mathbf{K}^{|A|}$; $E = E^{\perp \perp}$, then it is equipped with a locally convex topology

Topological Vector Spaces based on **Sequences**

Köthe Spaces [Ehrhard 2003]

- A set |A| induces a real or complex vector space $\mathbf{K}^{|A|}$
- ► An orthogonality between vectors

 $x\perp x' \qquad \text{iff} \qquad \sum_{a\in |A|} |x_a\,x_{a'}| \text{ is absolutely converging}$

▶ If $E \subset \mathbf{K}^{|A|}$; $E = E^{\perp \perp}$, then it is equipped with a locally convex topology

Finiteness spaces [Ehrhard 2002]

- A set |A| and a space of sequences $\mathbf{S}\langle A \rangle \coloneqq \{x \in \mathbf{S}^{|A|}; \operatorname{supp}(x) \in \mathcal{F}A\}$
- ▶ An orthogonality between vectors

$$x \perp x'$$
 iff $\sum_{a \in |A|} x_a x_{a'}$ is finite

► A linearized topology induced by linear neighbourhoods

$$\mathcal{V}(v) = \{ x \in \mathbf{S} \langle A \rangle; \, \mathsf{supp}(x) \cap v = \emptyset \}, \, \, v \in \mathcal{F}A^{\perp}$$

A *dual* linearized bornology induced by compact/bounded subspaces

$$\mathcal{K}(u) = \{ x \in \mathbf{S} \langle A \rangle; \, \mathrm{supp}(x) \subset u \}, \, \, u \in \mathcal{F}A$$

Lefschetz spaces [T09]

- ▶ A linearized Topological Vector Spaces
- \blacktriangleright An orthogonality between opens U and bounded linear subspaces B

 $U \perp B$ iff $B/B \cap U$ has finite dimension

In a bornological vector space is a Lefschetz space such that $(\mathcal{V})^{\perp\perp} = \mathcal{V}$

▶ Open Problem: prove the stability of bornological Lefschetz spaces by tensor product and exponentials

Lefschetz spaces [T09]

- ▶ A linearized Topological Vector Spaces
- \blacktriangleright An orthogonality between opens U and bounded linear subspaces B

 $U \perp B$ iff $B/B \cap U$ has finite dimension

In a bornological vector space is a Lefschetz space such that $(\mathcal{V})^{\perp\perp} = \mathcal{V}$

▶ Open Problem: prove the stability of bornological Lefschetz spaces by tensor product and exponentials

Convenient Vector Spaces

- Mackey-complete, separated, topological convex bornological vector spaces and bounded linear maps
- ▶ Smooth maps preserve smooth curves (no need of norm) [BET 10]
- ▶ Maps that are Series preserve holomorphic curves [KT12]
- Schwartz ε -Tensor and reflexive models [Dabrowski & Kerjean 17]

Probabilistic setting

Probabilistic Coherent Spaces are based on Sequences

- A set |A| and a cone of sequences $\mathbf{R}^{+|A|}$
- ▶ An orthogonality between vectors

$$x \perp x'$$
 iff $\sum_{a \in |A|} |x_a x_{a'}| < 1$

- ▶ Morphims are Taylor series
- ► Topology induces Full Abstraction [EPT14]

Probabilistic setting

Probabilistic Coherent Spaces are based on Sequences

- A set |A| and a cone of sequences $\mathbf{R}^{+|A|}$
- ▶ An orthogonality between vectors

$$x \perp x'$$
 iff $\sum_{a \in |A|} |x_a x_{a'}| < 1$

- ▶ Morphims are Taylor series
- ► Topology induces Full Abstraction [EPT14]

Probabilistic Stable Cones are NOT based on Sequences

- ▶ Cones and ∞ -non-decreasing functions
- ▶ Measurable maps preserve measurable paths (no need of measurability)
- ▶ A model of probabilistic PCF [EPT18]
- ▶ A model of Linear Logic [Ehrhard20]
- ► Topology induces Stable morphims between Probabilistic Coherent Spaces are series ! [Crubille19]

Pagani&Tasson&Vaux

To finiteness spaces and beyond!

TE60 22/22