To finiteness spaces and beyond!

Michele Pagani, Christine Tasson & Lionel Vaux Auclair
(not necessarily in that order)

Workshop in Honour of Thomas Ehrhard’s 60th Birthday,
29-30 September 2022, Paris




The relational model of linear logic

[A® Bl =|A|x |B| At =|A] [\Al=m(A)  [r:T]CIT|

(a',a) € [[AL’A (ax): iff ' =a
A : B, |
O (eti) € [P0 (@) (0) € [l and () € [

(cut)- iff Ja € |A|, (7,a) € [] and (a,0) € [p]
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“The” quantitative relational model of linear logic

|A®B|=[A] x |B| |A*|=|A] Al=m;(4])  [x:T] €S/

[[ALv A (ax)]] a’,a - 5(1/’”
|[7TZ A  p:B, ’

| (%
I ,A@B, v, (ab),

[71+.a < Lo,

’<mﬂ2wwmm

a€|A|
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Finiteness spaces (Ehrhard, early 2000’s, pub. 2005)

FCPA) ~ FL={d CAVacF, ald}
al d iff a N a is finite

> A finiteness spaceis A = (’A|, ./—"A) with FA = (FA)*+ CB(|A4))

» The associated vector space: ~ S(A) = {x € SI4l; supp(z) € FA}

(x| y) = Za€|A| ZTaqlq when z € S(A) and y € S(AL)
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Interpreting LL

F(A*) = (FA)*
FAB)={axxy;z € FA y E]:B}Ll
]:(!A) = {Dﬁf<x); = ]:A}LL

Theorem (EHRHARD, 2005)

[=: 177 e FII]

In particular [r : T A]]ﬁ}jd € S([A]) and [p: A+, A] ?R;d € S([A]*)
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Interpreting LL

F(A*) = (FA)*
FAB)={axxy;z € FA y E]:B}Ll
]:(!A) = {Dﬁf<x); = ]:A}LL

Theorem (EHRHARD, 2005)
[=: 177 e FII]

In particular [r : T A]]ﬁ}jd € S([A]) and [p: A+, A] ?R;d € S([A]*)

A semantics of finite interaction, e.g.:
> YES: system T;
» NO: letrec, fixpoint operators.
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Transport of finiteness structures

Lemma (EHRHARD, 2005)

F(A®B)={z€ |A® B|; z4 € FA, zp € FB}
F(1A) ={z € |'A|; supp(z) € FA}

Lemma (Transport [T.-V., 2018])

If A is a set and B is a finite space, and f C A x |B| is such that f -a € FB
for each a € A, then (A,{x C A; f-x € FB}) is a finiteness space.
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I expansion

A long story short:
> finiteness spaces: maps in the coKleisly = power series
» differential A-calculus (and DiLL)
> Taylor expansion of A\-terms (and of MELL proof nets)

T(=):A— 8

T(MN) Z —T(M)T(N)"

n>O

(Ax.8)[t1, ..., tn] = Z slt1/x1, ... tn/Tn]

feG’Vl

Theorem (EHRHARD—REGNIER, 2008)
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r expansion in a non uniform setting

T(-): Ay -S4
T(M+N):=T(M)+T(N)
What about:

NF(T(Y(A\z.a+2z))=a+a+a+...7
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ylor expansion in a non uniform setting

T(-): Ay -S4
T(M+N):=T(M)+T(N)
What about:

NF(T(Y(A\z.a+2z))=a+a+a+...7
NF(T(Y(A\z.a—2z))=a—a+a—...7

This never happens for typed terms. Why?
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Finiteness and Taylor expansion

Let Fo = {1s0; so € Ag}+ with s € 1s¢ iff 59 € supp(NF(s)).
Define [A] C Fo € P(A) by reducibility.

Theorem (EHRHARD, 2010)
IfE M : A then T (M) € S([A]).

Pagani&Tasso
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Finiteness and Taylor expansion

Let Fo = {1s0; so € Ag}+ with s € 1s¢ iff 59 € supp(NF(s)).
Define [A] C Fo € P(A) by reducibility.

Theorem (EHRHARD, 2010)
IfE M : A then T (M) € S([A]).

Refine: F = {1B; B € B}* with B € B if the size of bags in terms of B is
bounded.

Theorem (P.T.V., 2016)
M is SN iff T(M) € S(F).
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Finiteness and Taylor expansion

Let Fo = {1s0; so € Ag}+ with s € 1s¢ iff 59 € supp(NF(s)).
Define [A] C Fo € P(A) by reducibility.

Theorem (EHRHARD, 2010)
IfE M : A then T (M) € S([A]).

Refine: F = {1B; B € B}* with B € B if the size of bags in terms of B is
bounded.

Theorem (P.T.V., 2016)
M is SN iff T(M) € S(F).

And then NF(T(M)) = T(NF(M))?
> If M —5 N and T(M) € S(F) then NF(T(M)) = NF(T(N)) [V., 2017]
» This can be adapted to MELL proof nets [CHOUQUET-V ., 2018]
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Finiteness and Cut-reduction

cut-reduction
safe interaction

\
|

finiteness spaces




Once upon a time there was... MLL

cut-reduction

7 net safe interaction m cut-free net
is AC / \
i 181 Girard Bechet va' AC {m|n’) is WN
implies 1987 | 1093 implies
vr' AC (r|7’) is WN \ mis AC
MLL
nets
5wiz‘(hi7u acyclicity
mis AC Glrard \Retore VX, [r]x clique

implies 1987 /1994 implies
VX, [r]x clique \ / mis AC

coherence spaces
cliques
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and what about exponentials, i.e. MELL?

cut-reduction
safe interaction

is AC /
T Girard

implies |

vr' AC (r|7’) is WN 1987 \

7 net

MELL
nets
switching acyclicity
mis AC Girard/
implies 1987

VX, [r]x clique

coherence spaces
cliques
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Il faut laisser parler
les modeles !
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and what about exponentials, i.e. MELL?

cut-reduction
safe interaction

is AC /
T Girard

implies |

vr' AC (r|7’) is WN 1987 \

7 net

MELL
nets
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and what about exponentials, i.e. MELL?

cut-reduction

. - 7 cut-free net
safe interaction

7 net

m is VAC i /
Girard* |

implies .
vr' VAC (x|n’) is WN 1987 \

MELL
nets
m’sible acyclic h‘y

™ is YAC Glrard* Pagam VX, [r]x clique
implies 1987 2006 implies
VX, [7]x clique \ / 7 is VAC

N-coherence spaces
cliques
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.what happens in differential LL?

cut-reduction

™ net safe interaction @ cut-free net
™ is VAC / \\ vr! VAC (r|r’) is WN
implies [ | implies
Vr! VAC (r|n’) is WN \ / 7 is VAC

differential nets
with promotion
visible acyclicity

7 is VAC / \.! VX, [#]x is finitary
implies / implies
VX, [r]x is finitary \ / 7 is VAC

finiteness spaces
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Behind the scenes

Linear Logic Cut Rule is given by composition of Matrices

)] = ¥ Il <Dl

7 ac|A|

[[W:T,A p: AL,
I,

LL Exponentials induce and Taylor Expansion

A proof of E = F := |E —o F is given by Q € (K)”(IXDxIYl gt

Vo e S<)(>7 Q(l) = Z Qm,b H ',Azzn,{u) c S<Y>

meMs(|X]) acEm
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Behind the scenes

Linear Logic Cut Rule is given by composition of Matrices

HW VA pr AL
I,

= ()] = X bl

ac|A|

LL Exponentials induce and Taylor Expansion

A proof of E = F := |E —o F is given by Q € (K)”(IXDxIYl gt

Vo e S<X>, Q(l) = Z an b H ) € S<Y>

meM (|X]) agm

Topology gives a meaning to converging sums.
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Topological Vector Spaces based on Sequences

Kothe Spaces [Ehrhard 2003]
> A set |A| induces a real or complex vector space K4
» An orthogonality between vectors
x L iff > ae|A| [Ta Tar| is absolutely converging

> If E c K4l E = ELL then it is equipped with a locally convex topology
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Topological Vector Spaces based on Sequences

Kothe Spaces [Ehrhard 2003]

> A set |A| induces a real or complex vector space K4

» An orthogonality between vectors

x L iff > ae|A| [Ta Tar| is absolutely converging

> If Ec K4l E = ELL | then it is equipped with a locally convex topology
Finiteness spaces [Ehrhard 2002]

> A set |A| and a space of sequences S(A) = {z € SI4I; supp(z) € FA}

> An orthogonality between vectors

z Lo iff Zae\AI Tq Lo i finite

» A linearized topology induced by linear neighbourhoods
V(v) = {z € S(A); supp(x) Nv = P}, v € FAL
» A dual linearized bornology induced by compact/bounded subspaces

K(u) = {z € S(A); supp(x) Cu}, ue FA
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Topological Vector Spaces NOT based on Sequences

Lefschetz spaces [T09)
> A linearized Topological Vector Spaces
» An orthogonality between opens U and bounded linear subspaces B
ULlB ifft  B/BNU has finite dimension
In a bornological vector space is a Lefschetz space such that (V)t+ =V

» Open Problem: prove the stability of bornological Lefschetz spaces by
tensor product and exponentials
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Topological Vector Spaces NOT based on Sequences

Lefschetz spaces [T09)
> A linearized Topological Vector Spaces
» An orthogonality between opens U and bounded linear subspaces B
ULlB ifft  B/BNU has finite dimension
In a bornological vector space is a Lefschetz space such that (V)t+ =V

» Open Problem: prove the stability of bornological Lefschetz spaces by
tensor product and exponentials

Convenient Vector Spaces

» Mackey-complete, separated, topological convex bornological vector
spaces and bounded linear maps

> Smooth maps preserve smooth curves (no need of norm) [BET 10]
» Maps that are Series preserve holomorphic curves [KT12]

» Schwartz e-Tensor and reflexive models [Dabrowski & Kerjean 17]
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Probabilistic setting

Probabilistic Coherent Spaces are based on
> A set |A] and a cone of sequences R+
> An orthogonality between vectors
x 1l a iff Y aeia) [ Tazar| <1
» Morphims are Taylor series
» Topology induces [EPT14]
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Probabilistic setting

Probabilistic Coherent Spaces are based on
> A set |A] and a cone of sequences R+
> An orthogonality between vectors
x 1l a iff Y aeia) [ Tazar| <1
» Morphims are Taylor series
» Topology induces [EPT14]

Probabilistic Stable Cones are based on
» Cones and co-non-decreasing functions
» Measurable maps preserve measurable paths (no need of measurability)
> A model of probabilistic PCF [EPT18]
> A model of Linear Logic [Ehrhard20]
| 4

Topology induces Stable morphims between Probabilistic Coherent
Spaces are series | [Crubillel9]
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