
To finiteness spaces and beyond!

Michele Pagani, Christine Tasson & Lionel Vaux Auclair
(not necessarily in that order)

Workshop in Honour of Thomas Ehrhard’s 60th Birthday,
29–30 September 2022, Paris

Pagani&Tasson&Vaux To finiteness spaces and beyond! TE60 1 / 22



The relational model of linear logic

|A⊗B| = |A| × |B| |A⊥| = |A| |!A| = Mf (|A|) Jπ : ΓK ⊆ |Γ|

(a′, a) ∈
r

(ax )
A⊥, A

z
iff a′ = a

(γ, (a, b), δ) ∈
s
π : Γ, A ρ : B,∆

(⊗)
Γ, A⊗B,∆

{
iff (γ, a) ∈ JπK and (b, δ) ∈ JρK

· · ·

(γ, δ) ∈
s
π : Γ, A ρ : A⊥,∆

(cut)
Γ,∆

{
iff ∃a ∈ |A|, (γ, a) ∈ JπK and (a,δ) ∈ JρK
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“The” quantitative relational model of linear logic

|A⊗B| = |A| × |B| |A⊥| = |A| |!A| = Mf (|A|) Jπ : ΓK ∈ S|Γ|

r
(ax )

A⊥, A

z

a′,a
= δa′,a

s
π : Γ, A ρ : B,∆

(⊗)
Γ, A⊗B,∆

{

γ,(a,b),δ

= JπKγ,a × JρKb,δ

· · ·
s
π : Γ, A ρ : A⊥,∆

(cut)
Γ,∆

{

γ,δ

=
∑
a∈|A|

JπKγ,a × JρKa,δ
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To finiteness spaces. . .
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Finiteness spaces (Ehrhard, early 2000’s, pub. 2005)

F ⊆ P(A)  F⊥ := {a′ ⊆ A; ∀a ∈ F , a ⊥ a′}

a ⊥ a′ iff a ∩ a′ is finite

I A finiteness space is A = (|A|,FA) with FA = (FA)⊥⊥ ⊆ P(|A|)

I The associated vector space: S〈A〉 := {x ∈ S|A|; supp(x) ∈ FA}

〈x | y〉 :=
∑

a∈|A| xaya when x ∈ S〈A〉 and y ∈ S〈A⊥〉
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Interpreting LL

F(A⊥) := (FA)⊥

F(A⊗B) := {x× y; x ∈ FA, y ∈ FB}⊥⊥

F(!A) := {Mf (x); x ∈ FA}⊥⊥

Theorem (Ehrhard, 2005)

Jπ : ΓKRel ∈ FJΓK

In particular Jπ : Γ, AKQRelγ,− ∈ S〈JAK〉 and
q
ρ : A⊥,∆

yQRel
−,δ ∈ S〈JAK⊥〉

A semantics of finite interaction, e.g.:

I YES: system T;

I NO: letrec, fixpoint operators.
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Transport of finiteness structures

Lemma (Ehrhard, 2005)

F(A⊗B) = {z ∈ |A⊗B|; zA ∈ FA, zB ∈ FB}
F(!A) = {x̄ ∈ |!A|; supp(x̄) ∈ FA}

Lemma (Transport [T.-V., 2018])

If A is a set and B is a finite space, and f ⊂ A× |B| is such that f · a ∈ FB
for each a ∈ A, then (A, {x ⊂ A; f · x ∈ FB}) is a finiteness space.
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Taylor expansion

A long story short:
I finiteness spaces: maps in the coKleisly = power series
I differential λ-calculus (and DiLL)

I Taylor expansion of λ-terms (and of MELL proof nets)

T (−) : Λ→ S∆

T (MN) :=
∑
n≥0

1

n!
T (M)T (N)n

(λx.s)[t1, . . . , tn]→
∑
f∈Sn

s[t1/x1, . . . , tn/xn]

Theorem (Ehrhard–Regnier, 2008)

NF(T (M)) = T (B(M))
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Taylor expansion in a non uniform setting

T (−) : Λ+ → S∆

T (M +N) := T (M) + T (N)

What about:

NF(T (Y (λx.a+ x))) = a+ a+ a+ . . .?

NF(T (Y (λx.a− x))) = a− a+ a− . . .?

This never happens for typed terms. Why?
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To finiteness spaces and beyond!
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Finiteness and Taylor expansion

Let F0 := {↑s0; s0 ∈ ∆0}⊥ with s ∈ ↑s0 iff s0 ∈ supp(NF(s)).
Define JAK ⊆ F0 ⊆ P(∆) by reducibility.

Theorem (Ehrhard, 2010)

If `M : A then T (M) ∈ S〈JAK〉.

Refine: F := {↑B; B ∈ B}⊥ with B ∈ B if the size of bags in terms of B is
bounded.

Theorem (P.T.V., 2016)

M is SN iff T (M) ∈ S〈F〉.

And then NF(T (M)) = T (NF(M))?

I If M →β N and T (M) ∈ S〈F0〉 then NF(T (M)) = NF(T (N)) [V., 2017]

I This can be adapted to MELL proof nets [Chouquet-V., 2018]
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Finiteness and Cut-reduction

π net

cut-reduction
safe interaction

��

π cut-free net

π is VAC
implies

∀π′ VAC 〈π|π′〉 is WN

∀π′ VAC 〈π|π′〉 is WN
implies
π is VAC

differential nets
with promotion

visible acyclicity

π is VAC
implies

∀X , JπKX is finitary

∀X , JπKX is finitary
implies
π is VAC

finiteness spaces
finitary relation

]]

Where do they come from?
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Once upon a time there was. . . MLL

VAC

π net
cut-reduction

safe interaction

Béchet
1998

��

π cut-free net

π is AC
implies

∀π′ AC 〈π|π′〉 is WN

∀π′ AC 〈π|π′〉 is WN
implies
π is AC

MLL
nets

switching acyclicity

Girard
1987

��

Girard
1987

DD

π is AC
implies

∀X , JπKX clique

∀X , JπKX clique
implies
π is AC

coherence spaces
cliques

Retoré
1994

XX

. . . but we do not want to be confined in MLL!
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and what about exponentials, i.e. MELL?

VAC

π net
cut-reduction

safe interaction π cut-free net

π is AC
implies

∀π′ AC 〈π|π′〉 is WN

∀π′ AC 〈π|π′〉 is WN
implies
π is AC

MELL
nets

switching acyclicity

Girard
1987

��

Girard
1987

DD

π is AC
implies

∀X , JπKX clique

∀X , JπKX clique
implies
π is AC

coherence spaces
cliques
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Il faut laisser parler
les modèles !
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and what about exponentials, i.e. MELL? VAC

π net
cut-reduction

safe interaction π cut-free net

π is VAC
implies

∀π′ VAC 〈π|π′〉 is WN

∀π′ AC 〈π|π′〉 is WN
implies
π is AC

MELL
nets

visible acyclicity

Girard*
1987

��

Girard*
1987

DD

π is VAC
implies

∀X , JπKX clique

∀X , JπKX clique
implies
π is VAC

N-coherence spaces
cliques

Pagani
2006

XX
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. . . what happens in differential LL?

π net
cut-reduction

safe interaction

��

π cut-free net

π is VAC
implies

∀π′ VAC 〈π|π′〉 is WN

∀π′ VAC 〈π|π′〉 is WN
implies
π is VAC

differential nets
with promotion

visible acyclicity

��

DD

π is VAC
implies

∀X , JπKX is finitary

∀X , JπKX is finitary
implies
π is VAC

finiteness spaces
finitary relation

XX

Where do they come from?
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The Topological
Space Ranger
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Behind the scenes Topological Vector Spaces

Linear Logic Cut Rule is given by Linear Algebra composition of Matrices

s
π : Γ, A ρ : A⊥,∆

(cut)
Γ,∆

{

γ,δ

=
∑
a∈|A|

JπKγ,a × JρKa,δ

LL Exponentials induce Topological Vector Spaces and Taylor Expansion

A proof of E⇒ F := !E ( F is given by Q ∈ (K)Mf (|X|)×|Y | s.t.

∀x ∈ S〈X〉, Q(x) =

 ∑
m∈Mf (|X|)

Qm,b
∏
a∈m

xm(a)
a


b

∈ S〈Y 〉

Topology gives a meaning to converging sums.
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Topological Vector Spaces based on Sequences

Köthe Spaces [Ehrhard 2003]

I A set |A| induces a real or complex vector space K|A|

I An orthogonality between vectors

x ⊥ x′ iff
∑
a∈|A| |xa xa′ | is absolutely converging

I If E ⊂ K|A|; E = E⊥⊥, then it is equipped with a locally convex topology

Finiteness spaces [Ehrhard 2002]

I A set |A| and a space of sequences S〈A〉 := {x ∈ S|A|; supp(x) ∈ FA}
I An orthogonality between vectors

x ⊥ x′ iff
∑
a∈|A| xa xa′ is finite

I A linearized topology induced by linear neighbourhoods

V(v) = {x ∈ S〈A〉; supp(x) ∩ v = ∅}, v ∈ FA⊥

I A dual linearized bornology induced by compact/bounded subspaces

K(u) = {x ∈ S〈A〉; supp(x) ⊂ u}, u ∈ FA
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Topological Vector Spaces NOT based on Sequences

Lefschetz spaces [T09]

I A linearized Topological Vector Spaces

I An orthogonality between opens U and bounded linear subspaces B

U ⊥ B iff B/B ∩ U has finite dimension

In a bornological vector space is a Lefschetz space such that (V)⊥⊥ = V
I Open Problem: prove the stability of bornological Lefschetz spaces by

tensor product and exponentials

Convenient Vector Spaces

I Mackey-complete, separated, topological convex bornological vector
spaces and bounded linear maps

I Smooth maps preserve smooth curves (no need of norm) [BET 10]

I Maps that are Series preserve holomorphic curves [KT12]

I Schwartz ε-Tensor and reflexive models [Dabrowski & Kerjean 17]
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Probabilistic setting

Probabilistic Coherent Spaces are based on Sequences

I A set |A| and a cone of sequences R+|A|

I An orthogonality between vectors

x ⊥ x′ iff
∑
a∈|A| |xa xa′ | < 1

I Morphims are Taylor series

I Topology induces Full Abstraction [EPT14]

Probabilistic Stable Cones are NOT based on Sequences

I Cones and ∞-non-decreasing functions

I Measurable maps preserve measurable paths (no need of measurability)

I A model of probabilistic PCF [EPT18]

I A model of Linear Logic [Ehrhard20]

I Topology induces Stable morphims between Probabilistic Coherent
Spaces are series ! [Crubille19]
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A message by
Martin Hyland
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