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How we met

Via P.-L. Curien whom I knew from Marktoberdorf Summer School in

early 80s. In 1987 at some meeting he introduced me to Thomas E.

since for our Theses we were both working on categorical semantics

of the Calculus of Constructions (as various other people those days).

Pierre-Louis invited me to spend 3 weeks at ENS rue d’Ulm in early

summer 1988 which gave us the opportunity to compare and discuss

our approaches at numerous informal seminars.

I was using Cartmell’s contextual categories and concentrated on

correctness and completeness results.

We both were using realizability models as standard models which

were in the air those days anyway.

Thomas’ approach was based on Grothendieck fibrations which are

certainly more elegant but also a bit too general (it suffices to restrict

to full subfibrations of the fundamental fibration of the base category).
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Sequentiality, Full Abstraction etc.

My visit at ENS in 1988 opened up to me a new world and I met

various French colleagues the first time.

The full abstraction problem for PCF was quite topical those days and

starting with my visit in 1988 I learnt about Pierre-Louis’ approach

two sequentiality.

His sequential algorithms on concrete data structures in retro-

spect were the first games model.

But fully abstract not for PCF itself but rather for PCF extended by

a catch construct allowing one to compute sequentiality indices and

thus strategies (as later worked out in detail by Cartwright, Curien

and Felleisen).
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Strong Stability

But the holy grale was to give an extensional characterization of the

fully abstract model.

For PCF proper this can be done via Kripke logical relations but even

for booleans one has to add an infinite amount of structure which has

to be preserved by morphisms.

But the extensional quotient of the category SA of sequential algo-

rithms can be characterized as the category SS of strongly stable

functions between so-called hypercoherences, an ingeniously chosen

category of hypergraphs generalising coherence spaces, i.e. undi-

rected graphs in the combinatorialist’s sense.

Hypercoherences and strongly stable functions have a linear refine-

ment providing a model of classical linear logic.
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Further New Models of Linear Logic

One might expect that Linear Logic has models in categories of vector

spaces (of some restricted kind) and (certain) linear maps between

them. The restrictions are necessary since Banach spaces are typically

not reflexive and thus don’t model classical linear logic.

The first functional analytic model was given by so called Köthe

spaces having a basis of open subspaces.

These turned out as as induced by so-called finiteness spaces gen-

eralising coherence spaces.

The latter do not model general recursion but do model nondeter-

minism!
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Relational Model and Scott Model of LL

Sets and relations provide a model of linear logic when interpreting

!X as finite multi(sub)sets of X.

Complete prime algebraic lattices and linear Scott continuous func-

tions between them give rise to the so-called Scott model of linear

logic.

As shown by Thomas E. the latter appears as extensional collapse

of the above relational model.

NB There is nothing like N⊥ in Thomas’ Scott model.

It is more like a continuation model where objects are powers of

Σ (Sierpiński space) and morphisms are arbitrary Scott continuous

maps.
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Differential Models

Thomas observed that the finiteness model hosts for every object X

not only the deriliction morphism !X ⊸ X but also an antideriliction

morphism X ⊸ !X.

This allows one to asscociate with every morphism f : !X ⊸ Y its

derivative Df : !X ⊗X ⊸ Y .

Inspired by this model Thomas develops (with L. Regnier) differential

λ-calculus and linear logic.

In such calculi differentiation allows one to compute for functions

f : X → Y its Taylor expansion, the (infinite) product of all its

multi-ary linearizations based on the idea that from !X ∼=
∐

n∈ω
X⊗n we

obtain [X → Y ] = [!X ⊸ Y ] ∼=
∏

n∈ω
[X⊗n

⊸ Y ].
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Probabilistic Functional Programming 1

Based on ideas by Girard Thomas developed (with V. Danos) the

Probabilistic Coherence Space model of LL. Cliques are not just

subsets of the web |X| but rather functions |X| → [0,∞[ where x ⊥ y iff
∑

i∈I xiyi ≤ 1. A probabilistic coherence space then is a biorthogonally

closed subset of [0,∞[|X|.

The coKleisli category provides a model of Probabilistic PCF (with

a let-construct restricted to integers) which in joint work with Pagani

and Tasson he has shown to be fully abstract!

The proof is not based on a definability result for a dense subset but

rather on the fact that analytic functions are equal whenever they

coincide on a nonempty open subset.

Generalizing probabilistic coherence spaces to cones allows one to

have arbitrary spaces of finite measures as types.

Moreover one gets integration and differentiation as morphisms.
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Probabilistic Functional Programming 2

Thus, one obtains a model of Probabilistic Functional Program-

ming as used in applied fields like data mining, neural networks

etc.

Maybe this opens up the possibility to make “denotational seman-

tics great again” – at least to some extent.

What is lacking in my eyes is the relation to computability in the

sense of TTE or function realizability where probabilistic aspects are

added via probabilistic powerdomain or Daniell-Stone integration

(measures on X are positive linear functionals from R
X to R) as a

particular computational effect.
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What Next?

Thomas has forcefully demonstrated that Denotational Semantics is

alive and can be a driving force in developing new notions also relevant

for applications.

61 is not very old and so we can be curious what will come next!
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